

Enhancing Phytosanitary Systems for Healthy Plants, Safe & Sustainable Trade"

Sub-theme: *Pest diagnostics in phytosanitary systems*

Rapid molecular identification of thrips transmitting maize infecting viruses in Murang'a County of Kenya

Paul Ateng'a Nyamwamu Kenyatta University Nairobi, Kenya

www.africa-cope.org

Introduction

Thrips as vectors

□ 5800 thrips species have been described worldwide

□ Size ranges 1.5 - 3 mm in length

Thrips transmit tospoviruses and machlomoviruse

Five genera are viral vectors: Thrips, Frankliniella,

Scirtothrips, Microcephalothrips and Ceratothripoides

Thrips transmit *Maize chlorotic mottle virus* (MCMV) than can coinfect with a cereal Potyvirus (SCMV, MDMV, WSMV) to cause maize lethal necrosis (MLN)

Sugarcane mosaic virus	Maize chlorotic mottle virus	Maize lethal necrosis
By aphids	By thrips	(Severe chlorosis)

Problem Statement

□ *Frankliniella williamsi* and *F. occidentalis* (known vectors of MCMV) occur in all maize-growing regions of Kenya and Uganda (Mahuku et al 2015)

□Virus transmission competence vary with thrips species (Ananthakrishnan and Annadurai, 2007) which necessitates exploration of their genetic diversity.

Studies of Western flower thrips, *F. occidentalis* on French beans in Kenya have shown genetic differentiation and host preference (Hondelmann et. al., 2017)

□ The genetic diversity of thrips infesting maize as well as their competence in MCMV transmission has not been conclusive in Kenya

- □ Identification of thrips can be difficult because they are tiny with little morphological differentiation (Brunner et al., 2002; Murai and Toda 2001)
- Molecular identification complements morphological analysis to help overcome morphological variation challenges within life stages (Brunner et al., 2004)
- Mitochondrial gene cytochrome c oxidase I (mtCOI) marker differentiates interspecies variation (Savolainen et al., 2005)
- □Accurate vector identification is critical for both vector and virus disease management. It also guides establishment of bio-assay protocols for virus transmissions (Armstrong and Ball, 2005)

To determine the genetic diversity of thrips species infesting maize/corn in different agro-ecological zones affected with MCMV in Kenya.

Specific objectives

□ To determine the range of thrips species infesting maize in Kenya using mtCOI barcode.

□ To describe the genetic diversity of the thrips species infesting maize in Kenya using barcodes.

□ To determine the relationship between the genetic diversity of thrips species and MCMV incidence in different agro-ecological zones of Kenya.

Methodology

Sample collection

- Thrip samples collected from MLN affected maize fields at low, mid and high altitude agro-ecological zones
- Adult and late instar larvae sampled on maize in each of the six randomly selected Sub Counties of Murang'a
- Sample collection points considered at least 2 km apart so as to minimize chances of collecting clones from the same parthenogenetic female thrip
- Thrips mechanically aspirated onto collecting bottles before placing them in 95% ethanol inside 2 ml eppendorf tubes and shipped into the laboratory for genotyping

Methodology cont'

mtCOI barcoding

DNA extraction and PCR

PCR product purification and

DNA sequencing and analysis

- DNA extraction by chelex method
- mtCOI amplification using target primers
- Gel electrophoresis
- Amplified DNA purification using purification kit
- Quantification of purified DNA using spectrophotometer
- Sequencing of DNA
- Analysis of sequences and vector identification by matching sequences with online databases in gene-bank

Results cont'

mtCOI PCR amplified products

- DNA was extracted from samples of thrips larvae
- About 700bp of DNA were extracted
- Two primer sets were used
- Universal primers: HCO, LCO generated clear DNA bands than thrips specific primers: MTD7; MTD9.2R

Results cont'

Sample no	Location	code	ncbi blast %id	Sequence accession	Identity match
1	Muranga	PP1	81.98%	MF993432.1	Frankliniella occidentalis
2	Muranga	PP2	86.62%	HM246184.1	Chirothrips manicatus
3	Muranga	PP3	81.98%	MF993432.1	Frankliniella occidentalis
4	Muranga	PP6	81.54%	MF993432.1	Frankliniella occidentalis
5	Muranga	PP8	81.98%	MF993432.1	Frankliniella occidentalis
6	Muranga	PP9	81.98%	MF993432.1	Frankliniella occidentalis
7	Muranga	PP10	81.98%	MF993432.1	Frankliniella occidentalis
8	Muranga	PP11	82.29%	MF747143.1	Frankliniella williamsi
9	Muranga	PP12	81.98%	MF993432.1	Frankliniella occidentalis
10	Muranga	PP13	81.98%	MF993432.1	Frankliniella occidentalis
11	Muranga	PP14	81.98%	MF993432.1	Frankliniella occidentalis
12	Muranga	PP03	81.98%	MF993432.1	F. occidentalis
13	Muranga	PP04	80.87%	KM532315.1	Thripidae
14	Muranga	PP06	81.12%	KM532315.1	Thripidae
15	Muranga	PP07	80.58%	KM532315.1	Thripidae
16	Muranga	PP011	81.87%	MF993432.1	F. occidentalis
17	Muranga	PP013	80.04%	KM532315.1	Thripidae
18	Muranga	PP015	81.98%	MF993432.1	F.occidentalis
19	Kiambu	PP017	81.83%	MF993432.1	F. occidentalis
20	Kiambu	PP019	79.60%	KM532315.1	Thripidae

- Frankliniella thrips on maize in Murang'a have a genetic similarity of 80.04 -82.29%
- Frankliniella genus is widely distributed
- Only one sample matched with *F. williamsi*

Results cont'

 PP015 Assembly (reversed) PP017 Assembly (reversed) PP018 (reversed) PP019 Assembly PP019 Assembly PP019 Assembly PP019 Assembly PP014 (reversed) PP114 (reversed) PP14 (reversed) PP3 (reversed) PP14 (reversed) PP3 (reversed) PP07 Assembly (reversed) PP13 (reversed) PP13 (reversed) PP07 Assembly (reversed) PP13 (reversed) PP13 (reversed) PP13 (reversed) PP13 (reversed) PP13 (reversed) PP14 (reversed)

- Universal primers: HCO, LCO produce clear DNA bands than thrips specific primers: MTD7; MTD9.2R
- Thrips in *Frankliniella* genus on maize in Murang'a have a genetic similarity of 80.04 -82.29%
- Frankliniella genus is more prevalent and could play a major role in virus transmission
- Frankliniella occidentalis is widely distributed than F. williamsi
- •26% of the samples were identified up to genus level Tripideae

Recommendations

- More studies on genetic diversity of Thrips in *Frankliniella* genus in Kenya
- There is need for more information on the thrips species complexes infesting
- maize in Kenya as well as their genetic lineages through development of a
- comprehensive DNA barcode library for Thysanoptera

Acknowledgements

Theme: "Enhancing Phytosanitary Systems for Healthy Plants, Safe & Sustainable Trade" www.africa-cope.org

For more information, please contact:

www.africa-cope.org www.kephis.org Facebook.com/3rd phytosanitary Conference 2020 Twitter: @3rdphytoconf

Theme: Enhancing Phytosanitary Systems for Healthy Plants, Safe & Sustainable Trade" www.africa-cope.org